Sunday, December 23, 2007

Computer science Major achievements

Despite its relatively short history as a formal academic discipline, computer science has made a number of fundamental contributions to science and society. These include

Applications within computer science

A formal definition of computation and computability, and proof that there are computationally unsolvable and intractable problems.

The concept of a programming language, a tool for the precise expression of methodological information at various levels of abstraction.

Applications outside of computing

Sparked the Digital Revolution which led to the current Information Age and the internet.[12]
In cryptography, breaking the Enigma machine was an important factor contributing to the Allied victory in World War II.[9]
Scientific computing enabled advanced study of the mind and mapping the human genome was possible with Human Genome Project.[12] Distributed computing projects like Folding@home explore protein folding.
Algorithmic trading has increased the efficiency and liquidity of financial markets by using artificial intelligence, machine learning and other statistical/numerical techniques on a large scale

Relationship with other fields

Computer science is frequently derided by the sentence "Any field which has to have 'science' in its name isn't one." This was placed in print by physicist Richard Feynman in his Lectures on Computation (1996) after his passing.

Despite its name, a significant amount of computer science does not involve the study of computers themselves. Because of this several alternative names have been proposed. Danish scientist Peter Naur suggested the term datalogy, to reflect the fact that the scientific discipline revolves around data and data treatment, while not necessarily involving computers. The first scientific institution applying the datalogy term was DIKU, the Department of Datalogy at the University of Copenhagen, founded in 1969, with Peter Naur being the first professor in datalogy. The term is used mainly in the Scandinavian countries. Also, in the early days of computing, a number of terms for the practitioners of the field of computing were suggested in the Communications of the ACM—turingineer, turologist, flow-charts-man, applied meta-mathematician, and applied epistemologist.[14] Three months later in the same journal, comptologist was suggested, followed next year by hypologist.[15] Recently the term computics has been suggested.[16] Infomatik was a term used in Europe with more frequency.
In fact, the renowned computer scientist Edsger Dijkstra is often quoted as saying, "Computer science is no more about computers than astronomy is about telescopes." The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science. For example, the study of computer hardware is usually considered part of computer engineering, while the study of commercial computer systems and their deployment is often called information technology or information systems. Computer science is sometimes criticized as being insufficiently scientific, a view espoused in the statement "Science is to computer science as hydrodynamics is to plumbing" credited to Stan Kelly-Bootle[17] and others. However, there has been much cross-fertilization of ideas between the various computer-related disciplines. Computer science research has also often crossed into other disciplines, such as artificial intelligence, cognitive science, physics (see quantum computing), and linguistics.
Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines.[8] Early computer science was strongly influenced by the work of mathematicians such as Kurt Gödel and Alan Turing, and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logic, category theory, domain theory, and algebra.
The relationship between computer science and software engineering is a contentious issue, which is further muddied by disputes over what the term "software engineering" means, and how computer science is defined. David Parnas, taking a cue from the relationship between other engineering and science disciplines, has claimed that the principal focus of computer science is studying the properties of computation in general, while the principal focus of software engineering is the design of specific computations to achieve practical goals, making the two separate but complementary disciplines.[18]
The academic political and funding aspects of computer science tend to have roots as to whether a department in the US formed with either a mathematical emphasis or an engineering emphasis. In general, electrical engineering based CS departments have tended to succeed as computer science and/or engineering departments. CS departments with a mathematics emphasis and with a numerical orientation consider alignment computational science. Both types of departments tend to make efforts to bridge the field educationally if not across all research

No comments:

Ad's Search

Google